Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb.
نویسندگان
چکیده
Odorants are first represented in the brain by distributed patterns of activity in the olfactory bulb (OB). Although neurons downstream of sensory inputs respond to odorants with temporally structured activity, sensory inputs to glomeruli are typically described as static maps. Here, we imaged the temporal dynamics of receptor neuron input to the OB with a calcium-sensitive dye in the olfactory receptor nerve terminals in anesthetized mice. We found that diverse, glomerulus- and odorant-dependent temporal dynamics are present even at this initial input stage. Instantaneous spatial patterns of receptor input to glomeruli changed both within and between respiration cycles. Glomerular odorant responses differed in amplitude, latency, rise time, and degree of modulation by sniffing in an odorant-specific manner. Pattern dynamics within the first respiration cycle recurred in a similar manner during consecutive cycles. When sniff rate was increased artificially, pattern dynamics were preserved in the first sniff but were attenuated during subsequent sniffs. Temporal response properties were consistent across individuals on a coarse regional scale and on a fine scale of individual glomeruli. Latency and magnitude of glomerular inputs were only weakly correlated and might therefore convey independent odorant information. These data demonstrate that glomerular maps of primary sensory input to the OB are temporally dynamic. These dynamics may contribute to the representation of odorant information and affect information processing in the central olfactory system of rodents.
منابع مشابه
Olfactory Coding with Patterns of Response Latencies
The encoding of odors by spatiotemporal patterns of mitral/tufted (M/T) cells in the vertebrate olfactory bulb has been discussed controversially. Motivated by temporal constraints from behavioral studies, we investigated the information contained in odor-evoked first-spike latencies. Using simultaneous recordings of dozens of M/T cells with a high temporal resolution and quantitative ensemble ...
متن کاملTemporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats.
The dynamics of sensory input to the nervous system play a critical role in shaping higher-level processing. In the olfactory system, the dynamics of input from olfactory receptor neurons (ORNs) are poorly characterized and depend on multiple factors, including respiration-driven airflow through the nasal cavity, odorant sorption kinetics, receptor-ligand interactions between odorant and recept...
متن کاملSpatio-Temporal Dynamics of Odor Representations in the Mammalian Olfactory Bulb
We explored the spatio-temporal dynamics of odor-evoked activity in the rat and mouse main olfactory bulb (MOB) using voltage-sensitive dye imaging (VSDI) with a new probe. The high temporal resolution of VSDI revealed odor-specific sequences of glomerular activation. Increasing odor concentrations reduced response latencies, increased response amplitudes, and recruited new glomerular units. Ho...
متن کاملGlomerulus-specific, long-latency activity in the olfactory bulb granule cell network.
Reliable, stimulus-specific temporal patterns of action potentials have been proposed to encode information in many brain areas, perhaps most notably in the olfactory system. Analysis of such temporal coding has focused almost exclusively on excitatory neurons. Thus, the role of networks of inhibitory interneurons in establishing and maintaining this reliability is unclear. Here we use imaging ...
متن کاملEffect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb.
Neural activity underlying odor representations in the mammalian olfactory system is strongly patterned by respiratory behavior. These dynamics are central to many models of olfactory information processing. We have found previously that sensory inputs to the olfactory bulb change both their magnitude and temporal structure as a function of sniff frequency. Here, we ask how sniff frequency affe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2006